
TeamForge Git integration - Gerrit 2.1.x (for
TeamForge 7.1)

Contents

TeamForge Git integration...4

Set up the TeamForge Git integration...6
Requirements for the TeamForge Git integration...6

Install the TeamForge Git integration ..6

Upgrade the Git integration along with TeamForge ..7

Upgrade the Git integration independent of TeamForge..8

Reconfigure the TeamForge Git integration ..9

Uninstall the TeamForge Git integration ...9

TeamForge Git integration: VMware image...9

Change the administrator passwords (VMware image)...9

Change the administrator's SSH key pair (VMware image)..10

Create a Git repository in TeamForge...12

Control access to Git source code..14

Access Git with an SSH key...15

Clone a Git repository..16

Work with Gerrit ...17
Add Gerrit as a linked application ...17

Control the code review policy for Git repositories...17

Mandatory code reviews for Git repositories...18

Optional code review for Git repositories..19

Default code review for Git repositories..20

Custom code review for Git repositories..21

Code review policies: mappings...23

Notes on customizing your code review policy..23

Set up a code review process for TeamForge Git repositories...25

Prepare the Git client for code review..25

TeamForge Git integration: Gerrit Code Review policies FAQ...26

TeamForge Git integration: Gerrit Code Review workflow FAQ..27

Add a TeamForge user to Gerrit Administrators ...27

Update Git repository access rights in Gerrit ..29

Manage Gerrit access rights outside TeamForge..30

Set up Code Search for the TeamForge Git integration ...32

Gerrit configuration (for advanced users)..34

Memory settings in Gerrit configuration..34

sshd settings in Gerrit configuration..35

Database settings in Gerrit configuration...36

log4j settings in Gerrit configuration...37

TeamForge Git integration: History protection...38
TeamForge Git integration: Enable history protection ..38

2 | TeamForge Git integration | TOC

History protection reports ..40

TeamForge Git integration: History protection FAQ..41

GERRIT_FORCE_HISTORY_PROTECTION...42

TeamForge Git integration: FAQ...44
TeamForge Git integration: Install FAQ...44

TeamForge Git integration: Post-install FAQ...44

TeamForge Git integration: General usage FAQ..46

TeamForge Git integration: Upgrade and Uninstall FAQ...49

TeamForge Git integration: Technical concepts FAQ..49

TeamForge Git integration reference ...51
Gerrit directory structure, connectivity and more ...51

TeamForge Git integration with the CollabNet Desktops..54

TeamForge Git integration archives...54

Mappings between TeamForge and Gerrit...54

TeamForge Git integration release notes..56
TeamForge Git integration 7.1.4 release notes...56

Fixed issues: TeamForge Git integration 7.1.4...56

TeamForge Git integration 7.1.3 release notes...56

Fixed issues: TeamForge Git integration 7.1.3...56

TeamForge Git integration 7.1.2 release notes...56

Fixed issues: TeamForge Git integration 7.1.2...56

TeamForge Git integration 7.1.0 release notes...57

New features: TeamForge Git integration 7.1.0...57

Fixed issues: TeamForge Git integration 7.1.0...57

TeamForge Git integration | TOC | 3

TeamForge Git integration

TeamForge 7.1 supports an integration with the Git distributed version control tool powered by Gerrit.

Although Git is the world’s leading distributed version control system, the enterprise has been slow and tentative in its
adoption. Concerned with security breaches, compliance violations and lack of governance, many organizations have
chosen to take a "wait and see" approach. With TeamForge, Git is ready for the enterprise. TeamForge lets you realize
all the benefits of Git while ensuring the security, governance and manageability your business demands. With TeamForge,
you can even manage Git and Subversion together, within each individual project.

Gerrit is an open source code review system designed to work with Git. Gerrit supports various access control mechanisms.
The TeamForge Git integration uses Gerrit as a vehicle to bring TeamForge project roles and permissions into Git.

Highlights

• Easy Git repository management from TeamForge using TeamForge’s role based access control
• Authentication using SSH keys stored in TeamForge and http using Gerrit’s http passwords
• TeamForge artifact association with Git commits
• Git source code browsing and code search
• Single sign-on between TeamForge and the Gerrit web console
• Full support of Gerrit’s APIs to connect with Continuous Integration systems like Jenkins

Note: TeamForge 7.1 supports two versions of the Git integration — one based on Gerrit 2.1.10 (version 7.1.x
of the integration) and the other based on Gerrit 2.6.x (version 8.0.x of the integration).

Using this guide
Use this guide for the Git integration based on Gerrit 2.1.10 and supported by TeamForge 7.1:

• Release notes
• Install the Git integration

For the Git integration based on Gerrit 2.6.x and supported by TeamForge 7.1, see the TeamForge Git integration -
Gerrit 2.6.x guide.

For releases of the Git integration supported by earlier versions of TeamForge, see these guides:

• TeamForge 7.0

4 | TeamForge Git integration | TeamForge Git integration

http://help.collab.net/topic/teamforge71-git-gerrit26x/action/setup-teamforge-git-80.html
http://help.collab.net/topic/teamforge71-git-gerrit26x/action/setup-teamforge-git-80.html
http://help.collab.net/topic/teamforge7x-git-integration/faq/teamforge_git_integration_overview.html

• TeamForge 6.2.x

Related Links
Git

Gerrit

TeamForge Git integration | TeamForge Git integration | 5

http://help.collab.net/topic/teamforge-git-integration/faq/teamforge_git_integration_overview.html
http://git-scm.com/
http://code.google.com/p/gerrit/

Set up the TeamForge Git integration

With TeamForge 7.1, you install the Git integration as part of installing TeamForge.

Note: This is different from how you install the Git integration with TeamForge 6.x where you install TeamForge
6.x first, and then follow a separate process to install the Git integration.

Requirements for the TeamForge Git integration
Here's the list of software required for the TeamForge Git integration.

• RedHat Enterprise Linux 6.3 or 6.4
• CentOS 6.3 or 6.4
• SUSE Linux Enterprise Server 11 SP2
• TeamForge 7.1
• JRE 1.6 or later (Oracle JRE only)
• Git 1.7 or later
• PostgreSQL server 9.0.13

Note: You need permissions for the gerrit Unix user to connect to the reviewdb database from localhost.

• PostgreSQL client
• OpenSSH client
• Apache Web Server with proxy and rewrite modules enabled

In addition, you need to do the following:

• Import the TeamForge host SSL certificate into the Git integration server's JVM trust store
• Import the Git SCM integration server host certificate into the TeamForge server's JVM trust store

Note: For a complete list of software supported by TeamForge 7.1, see these requirements.

Install the TeamForge Git integration
You can install the TeamForge Git integration with TeamForge and the Git integration the same server (Local mode)
or on different servers (Remote mode).

RHEL and CentOS

• To install TeamForge 7.1 and the Git integration on the same server, see Install TeamForge 7.1 the easy way.
• To install TeamForge 7.1 on one server and the Git integration on a separate server, see Install TeamForge 7.1 with

the Git integration on a separate server.

In addition, these installation scenarios are supported:

• Install TeamForge 7.1 (including the Git integration) on one server and Black Duck Code Sight on a separate server.
• Install TeamForge 7.1 on three servers (for intensive database utilization).

SUSE

• To install TeamForge 7.1 and the Git integration on the same server, see Install TeamForge 7.1 the easy way.

6 | TeamForge Git integration | Set up the TeamForge Git integration

http://help.collab.net/topic/teamforge-git-integration/action/setup-teamforge-git-integration.html
http://help.collab.net/topic/sysadmin-710/reference/teamforgesoftware.html
http://help.collab.net/topic/sysadmin-710/action/redhat_teamforge-install-dedicated.html
http://help.collab.net/topic/sysadmin-710/action/redhat_teamforge_dedicatedinstall_option5.html
http://help.collab.net/topic/sysadmin-710/action/redhat_teamforge_dedicatedinstall_option5.html
http://help.collab.net/topic/sysadmin-710/action/redhat_teamforge_dedicatedinstall_option4.html
http://help.collab.net/topic/sysadmin-710/action/redhat_teamforge_dedicatedinstall_option6.html
http://help.collab.net/topic/sysadmin-710/action/suse_teamforge-installdedicated.html

• To install TeamForge 7.1 on one server and the Git integration on a separate server, see Install TeamForge 7.1 with
the Git integration on a separate server.

In addition, these installation scenarios are supported:

• Install TeamForge 7.1 (including the Git integration) on one server and Black Duck Code Sight on a separate server.
• Install TeamForge 7.1 on three servers (for intensive database utilization).

The post-install.py script, which you run as part of setting up the Git integration, automatically creates a Git
SCM adaptor in TeamForge and sets it up. Here's an example of the Admin > Integrations > SCM integrations page
in TeamForge:

Important: You can adjust any configuration setting as required, except for Repository Root. This parameter
is set to "/tmp" — it is important that you NOT change it to some other directory path. It has to be set to this
value for backward compatibility reasons and will not affect the actual repository root location in the file system.

Once the post-install script completes successfully, start the gerrit service and check the logs,
gerrit-synch.system_log and gerrit.system_log under /opt/collabnet/gerrit/logs/, for
error messages. In case you see error messages in the logs, you can reconfigure Gerrit.

• Code Search functionality is available through integration with Black Duck Code Sight. To enable Black Duck Code
Sight for Git, see Set up Code Search for the TeamForge Git integration .

• To access the Gerrit web interface directly from TeamForge, you need to set it up as a linked application. When
that's done, you can log into the Gerrit console and change access rights (or permissions), add internal Gerrit groups
and users, and more.

Related Links
TeamForge Git integration: Install FAQ

Upgrade the Git integration along with TeamForge
You can upgrade to TeamForge 7.1 with the Git integration on the same server, or with TeamForge and the Git integration
on separate servers.

Special scenario

Follow the upgrade instructions here if either of these conditions is valid for your setup:

TeamForge Git integration | Set up the TeamForge Git integration | 7

http://help.collab.net/topic/sysadmin-710/action/suse_teamforge_dedicatedinstall_option5.html
http://help.collab.net/topic/sysadmin-710/action/suse_teamforge_dedicatedinstall_option5.html
http://help.collab.net/topic/sysadmin-710/action/suse_teamforge_dedicatedinstall_option4.html
http://help.collab.net/topic/sysadmin-710/action/suse_teamforge_dedicatedinstall_option6.html
http://help.collab.net/topic/teamforge-git-integration/action/teamforge-git-upgrade.html

• Your Git integration is hosted on a separate, regular Unix server and the corresponding TeamForge host is already
updated to version 7.1

• You are using TeamForge 6.2.x or initially configured your Git integration while using TeamForge 6.2.x

RHEL and CentOS

• To upgrade to TeamForge 7.1 with the Git integration on the same server, see Upgrade to TeamForge 7.1 on the
same server.

• To upgrade to TeamForge 7.1 with TeamForge on one server and the Git integration on a separate server, see Upgrade
to TeamForge 7.1 with the Git integration on a separate server.

SUSE

• To upgrade to TeamForge 7.1 with the Git integration on the same server, see Upgrade to TeamForge 7.1 on the
same server.

• To upgrade to TeamForge 7.1 with TeamForge on one server and the Git integration on a separate server, see Upgrade
to TeamForge 7.1 with the Git integration on a separate server.

Related Links
TeamForge Git integration: Upgrade and Uninstall FAQ

Upgrade the Git integration independent of TeamForge
CollabNet releases versions of the Git integration independent of TeamForge releases. These "point releases" of the
integration contain new features, improvements and bug fixes which affect only the Git integration-related components
without making changes to the TeamForge server.

Getting point releases is possible only after you have installed (or upgraded to) TeamForge 7.0 (or later) along with the
Git integration. To upgrade to a point release independent of TeamForge, follow these directions:

RHEL and CentOS
• If you have TeamForge 7.1 and have not initially configured the Git integration with TeamForge 6.2.x, do the

following

yum upgrade teamforge-git && yum upgrade ctf-git-integration

Run /opt/collabnet/gerrit/scripts/post-install.py
Restart gerrit: /etc/init.d/collabnet restart gerrit

• If you initially configured the Git integration with TeamForge 6.2.x, do the following

yum upgrade ctf-git-integration

Run /usr/sbin/ctf-git-integration-setup.sh –-upgrade.
Restart gerrit: service gerrit restart.

SUSE
• Whether you have TeamForge 7.1 and the Git integration on the same server or TeamForge 7.1 on one server and

the Git integration on an SCM integration server, do the following:

zypper update teamforge-git && zypper update ctf-git-integration

Run /opt/collabnet/gerrit/scripts/post-install.

8 | TeamForge Git integration | Set up the TeamForge Git integration

http://help.collab.net/topic/sysadmin-710/action/redhat_teamforge_allservicessameserver.html
http://help.collab.net/topic/sysadmin-710/action/redhat_teamforge_allservicessameserver.html
http://help.collab.net/topic/sysadmin-710/action/redhat_teamforge_gitonaseparateserver.html
http://help.collab.net/topic/sysadmin-710/action/redhat_teamforge_gitonaseparateserver.html
http://help.collab.net/topic/sysadmin-710/action/suse_teamforge_allservicessameserver.html
http://help.collab.net/topic/sysadmin-710/action/suse_teamforge_allservicessameserver.html
http://help.collab.net/topic/sysadmin-710/action/suse_teamforge_gitonaseparateserver.html
http://help.collab.net/topic/sysadmin-710/action/suse_teamforge_gitonaseparateserver.html

Reconfigure the TeamForge Git integration
After you've set up the TeamForge Git integration, it is possible to modify the settings.

• Whether you have TeamForge 7.1 and the Git integration on the same server, or TeamForge 7.1 on one server and
the Git integration on a separate SCM integration server, consider the following:

• Did you change the TeamForge Git integration user’s name or password, or the password for the Posgres database
“gerrit” role?

• Did you change properties related to TeamForge or Gerrit in TeamForge's site-options.conf file and
recreate the runtime?

• Did you override any Gerrit related parameter directly in
/opt/collabnet/gerrit/etc/gerrit.config?

If any of the above is true, do the following to reconfigure the Git integration (on RHEL, CentOS or SUSE):

Run /opt/collabnet/gerrit/scripts/post-install.py.
Restart gerrit: /etc/init.d/collabnet restart gerrit

• If you are using TeamForge 6.2.x or initially configured your Git integration while using TeamForge 6.2.x, and have
changed a configuration parameter, do the following:

Run /usr/sbin/ctf-git-integration-setup.sh.
Restart gerrit: service gerrit restart.

If you want to change the hostname of the TeamForge server or the hostname of the server running the Git integration,
take look at the Post-install FAQ.

Uninstall the TeamForge Git integration
To uninstall the integration, use the YUM utility.

Run this command as the root or sudo user:

yum remove ctf-git-integration

Uninstalling does not remove your Git repositories from the hard disk. The default location for the repositories is
/gitroot.

TeamForge Git integration: VMware image
The VMware image provides the TeamForge Git integration pre-configured, with a default SSH key pair and password
already set for the administrator user. If you installed the TeamForge Git integration using the VMware image, we
strongly advise you to change both credentials.

Change the administrator passwords (VMware image)
To change the pre-configured administrator password, specify a new one in the TeamForge User Details page and run
the post-install script.

The pre-configured version makes use of these accounts and passwords:

• The PostgreSQL gerrit user and its password — this password is not exposed

TeamForge Git integration | Set up the TeamForge Git integration | 9

• The TeamForge site administrator account used to connect Gerrit and TeamForge — admin/admin by default

Note: If you set up the integration yourself, you can specify the passwords for the gerrit user as well as the
TeamForge user during the install.

If you specify a new Gerrit DB password by running the post-install setup script, you would need to change it in the
Gerrit database as well.

• Change the PostgreSQL Gerrit password.

Log in as root in a shell and enter these commands:

su postgres
psql
ALTER USER gerrit with password 'your-password';
\q
exit

• Run the post-install setup script and change the password to match the one you specified earlier.

Note: Do not change the other default values.

service gerrit stop
/usr/sbin/ctf-git-integration-setup.sh
Change gerrit's password [y/N]? y
service gerrit start

Follow these steps to change the TeamForge user password:

• Change the password for the TeamForge site administrator.

a) Click Admin in the site navigation bar.
b) On the site administration navigation bar, click Users.
c) In the list of users, click the name of the administrator.
d) In the User Details page, click Change Password and specify the new password.

• Run the post-install setup script and change the password to match the one you specified earlier.

Note: Do not change the other default values.

service gerrit stop
/usr/sbin/ctf-git-integration-setup.sh
Change admin's password [y/N]? y
service gerrit start

Related Links
Discussion thread on changing the default administrator passwords

Change the administrator's SSH key pair (VMware image)
To change the administrator's pre-configured SSH key pair, re-generate the key pair and copy the public key to the
TeamForge Settings page.

1. Make sure that Gerrit is running on the VMware host.

service gerrit check

2. Back up the /opt/collabnet/gerrit/.ssh/ directory.

3. Switch to the gerrit system user and run the following commands to regenerate the SSH key pair.

su gerrit

ssh-keygen -t rsa

10 | TeamForge Git integration | Set up the TeamForge Git integration

http://forums.open.collab.net/ds/viewMessage.do?dsForumId=736&dsMessageId=482251

Note: When you are asked to overwrite the existing SSH key pair in /opt/collabnet/gerrit/.ssh,
answer "yes"; DO NOT specify a passphrase.

4. Copy the regenerated public key from /opt/collabnet/gerrit/.ssh/id_rsa.pub to your clipboard.

5. Using a web browser, log into your TeamForge site as an administrator and do the following:

a) On your My Workspace screen, click My Settings in your personal navigation bar.
b) On your User Details page, click Authorization Keys.
c) On the Authorization Keys page, remove the existing key(s).
d) Paste the regenerated public key from your clipboard.
e) Click Update.

TeamForge Git integration | Set up the TeamForge Git integration | 11

Create a Git repository in TeamForge

After the TeamForge Git integration is installed, project administrators can add Git repositories to TeamForge projects.

1. Click Source Code in the project navigation bar in TeamForge.

2. On the page listing the project repositories, click Create Repository.

The Create Repository page appears.

3. Choose Git for the server on which you want to create the repository.

12 | TeamForge Git integration | Create a Git repository in TeamForge

Note: The menu contains all of the SCM servers that the TeamForge administrators have added to the
TeamForge environment.

4. Enter the directory name for the repository.

5. Enter a name and description for the repository.

6. Select an option for Repository Category.

This option specifies the code review policy for the repository. For more information, see Control the code review
policy for Git repositories.

7. Select Protect History to turn on history protection for the repository.

For more information, see TeamForge Git integration: History protection.

8. If you want to require that each code commit be associated with an artifact (or a task or some other work item), select
Association Required on Commit.

9. For security reasons, you may want to restrict email notifications to the essential information. If so, select Hide
Details in Monitoring Messages.

10. Specify whether you want the repository's source code included in search results.

By default, the Available in Search Results setting is enabled. You may want to de-select this option, for example,
if there is sensitive information you want to exclude from search results.

11. Click Save.

The repository is automatically synched to Gerrit. The repository name you entered must be unique on the Gerrit server.
If so, a new Gerrit project is created with the repository name.

TeamForge Git integration | Create a Git repository in TeamForge | 13

Control access to Git source code

As a TeamForge project administrator, you can set up roles and permissions to control which users can view or commit
Git source code. When you've created a Git repository, add at least one project role with permissions to access that
repository.

1. Click Project Admin in the project navigation bar.

2. On the Project Settings page, click Permissions.

3. Select the role for which you want to add Git source code permissions.

• If the appropriate role does not exist, you must create it first. See Create a role.
• To modify an existing role, click its name.

4. On the Edit Role page, click Source Code.

5. Specify this role's access to the Git repository.

• To block users with this role from seeing the repository, select No Access.
• To allow users with this role to see everything in the repository but not commit to it, select View Only.
• To allow users with this role to commit to any path in the repository, select View and Commit.

6. Click Save.

Make sure you give team members access to the Git repository by assigning them the appropriate roles.

14 | TeamForge Git integration | Control access to Git source code

Access Git with an SSH key

To access a Git repository, you need to create a set of SSH authorization keys and use the public-key method for automatic
authentication.

Secure shell (SSH) can use public-key cryptography to confirm your identity, authenticate you to the remote host, and
encrypt data transmission.

1. Generate an SSH key pair according to the instructions in the documentation for your SSH client.

(Each SSH client provides its own mechanism for key pair generation.)

2. Log into your TeamForge site.

3. On your My Workspace screen, click My Settings in your personal navigation bar.

4. On your User Details page, click Authorization Keys.

5. On the Authorization Keys page, copy the public key from the .pub file in your SSH installation directory and
paste it into the Authorized Keys field.

6. Click Update.

Your SSH public key is now saved. When you log into a Git repository on your TeamForge site, SSH automatically
checks your private key against this public key and authenticates you.

TeamForge Git integration | Access Git with an SSH key | 15

Clone a Git repository

To get a local copy of a Git repository and start working with the source code, you clone the repository.

To be able to clone a Git repository, you need the following:

• SSH authorization key
• Requisite Source Code permissions

1. Run the git clone command with the URL of the repository. For example:

$ git clone ssh://user1@cu001.cloud.collab.net:29418/git_repository

2. Set your username and email values.

$ cd git_repository
git config --global user.name “user1”
git config --global user.email “user1@collab.net”

16 | TeamForge Git integration | Clone a Git repository

Work with Gerrit

When you add Gerrit as a linked application to TeamForge, you can access the web console from TeamForge and update
permissions and add internal groups and users.

Add Gerrit as a linked application
You can set up Gerrit as a linked application to TeamForge at the site or project level.

• Set up the URL http://<TEAMFORGEHOSTNAME>/gerrit/sso/.

Note: The last "/" matters. Make sure you have it.

• For instructions on setting up a site-wide linked application, see Create a site-wide linked application.

Here's an example for setting up Gerrit:

A link for Gerrit is added to your TeamForge navigation bar. Clicking the link displays the Gerrit console in the
main TeamForge window.

• To set up Gerrit as a project-wide linked application, see Link an external application.
A button for Gerrit is added to your project navigation bar.

Control the code review policy for Git repositories
To control how the code in your TeamForge Git repository is reviewed, select the code review policy option for Repository
Category.

For more information on Gerrit Code Review, see the Gerrit documentation.

This feature was introduced in the TeamForge Git integration 7.0.0 release. By default, the following code review policy
options are provided:

• Default (no code review): All Gerrit review features are turned off, and read/write access is enforced.
• Mandatory review: All code changes must be reviewed, and read/write access is enforced.

TeamForge Git integration | Work with Gerrit | 17

http://code.google.com/p/gerrit/

• Optional review: The review feature is turned on but can be bypassed if necessary; read/write access is enforced.
• Custom: Access rights must be set manually in the Gerrit web interface; they will not be overridden by TeamForge.

This specification is intended for advanced users who are familiar with Gerrit access rights and want to turn off “auto
pilot”.

If you have access to the gerritforge.mappings file, you can add your own categories.

Mandatory code reviews for Git repositories
When a mandatory review is specified, every change pushed to the repository must pass through a review process before
it can get committed (merged) to the repository.

Only TeamForge users with the Source Code Admin permission can bypass reviews.

Here's a list of permissions and what users with these permissions can do:

• No access: Users with no permissions cannot do anything.
• View only: Users with read permissions can read branches and push for reviews, and have -1 and +1 for reviews.
• Commit/View: Users with commit permissions can do everything read permissions would grant and in addition have

-2, +2 for reviews. They can verify and submit permissions but have no right to bypass reviews.
• Delete/View: Users with delete permissions can do everything commit permissions would grant.
• Source Code Admin: Users with admin permissions can do everything delete permissions would grant and in addition

push to/create any branch (bypassing review). They can rewrite history, forge the identity of the Gerrit server, and
have the right to push tags, the right to upload merges, and the right to fine tune access rights in Gerrit for the Gerrit
project involved.

Note: In TeamForge 6.2, the code review policy for a Git repository is defined in the Description field. If you
had specified the code review policy in TeamForge 6.2 and have now upgraded TeamForge to version 7.1, you
will see the appropriate code review option selected in the TeamForge 7.1 user interface. The Description field

18 | TeamForge Git integration | Work with Gerrit

will still display the [RepoCategory:<Category_name>], but you can remove it since it does not have any effect
in TeamForge 7.1.

Related Links
TeamForge Git integration: Gerrit Code Review policies FAQ

TeamForge Git integration: Gerrit Code Review workflow FAQ

Set up a code review process for TeamForge Git repositories

Optional code review for Git repositories
When an optional review is specified, every change submitted to the repository can be pushed for code review or directly
pushed to the repository bypassing review. This depends on the TeamForge user having the appropriate permissions —
source code Delete/View or Commit/View permission for the former, or Source Code Admin permission for the latter.

Here's a list of permissions and what users with these permissions can do:

• No access: Users with no permissions cannot do anything.
• View only: Users with read permissions can read branches and push for reviews, and have -1 and +1 for reviews.
• Commit/View: Users with commit permissions can do everything read permissions would grant and in addition have

-2, +2 for reviews. They can verify and submit permissions, push to/create any branch (bypassing review) and push
tags.

• Delete/View: Users with delete permissions can do everything commit permissions would grant and in addition,
have the right to rewrite history, upload merges and forge identity.

• Source Code Admin: Users with admin permissions can do everything delete permissions would grant and in addition
push to/create any branch (bypassing review). They can rewrite history, forge the identity of the Gerrit server, and

TeamForge Git integration | Work with Gerrit | 19

have the right to push tags, the right to upload merges, and the right to fine tune access rights in Gerrit for the Gerrit
project involved.

Note: In TeamForge 6.2, the code review policy for a Git repository is defined in the Description field. If you
had specified the code review policy in TeamForge 6.2 and have now upgraded TeamForge to version 7.1, you
will see the appropriate code review option selected in the TeamForge 7.1 user interface. The Description field
will still display the [RepoCategory:<Category_name>], but you can remove it since it does not have any effect
in TeamForge 7.1.

Related Links
TeamForge Git integration: Gerrit Code Review policies FAQ

TeamForge Git integration: Gerrit Code Review workflow FAQ

Set up a code review process for TeamForge Git repositories

Default code review for Git repositories
In TeamForge 7.x, the default code review policy — no code review required — is selected unless you choose some
other policy.

Here's a list of permissions and what users with these permissions can do:

• No access: Users with no permissions cannot do anything.
• View only: Users with read permissions can only read branches.
• Commit/View: Users with commit permissions can do everything read permissions would grant and in addition,

push to/create any branch and push tags.
• Delete/View: Users with delete permissions can do everything commit permissions would grant and in addition,

have the right to rewrite history, upload merges and forge identity.

20 | TeamForge Git integration | Work with Gerrit

• Source Code Admin: Users with admin permissions can do everything delete permissions would grant. In addition,
they can forge the identity of the Gerrit server, and have the right to fine tune access rights in Gerrit for the Gerrit
project involved.

Note: In TeamForge 6.2, the code review policy for a Git repository is defined in the Description field. If you
had specified the code review policy in TeamForge 6.2 and have now upgraded TeamForge to version 7.1, you
will see the appropriate code review option selected in the TeamForge 7.1 user interface. The Description field
will still display the [RepoCategory:<Category_name>], but you can remove it since it does not have any effect
in TeamForge 7.1.

Related Links
TeamForge Git integration: Gerrit Code Review policies FAQ

TeamForge Git integration: Gerrit Code Review workflow FAQ

Set up a code review process for TeamForge Git repositories

Custom code review for Git repositories
When a custom code review is specified, users with the TeamForge Source Code Admin permission can directly fine
tune permissions (access rights) in Gerrit’s web interface. Those changes will not be overridden by TeamForge.

For information on manually defining access rights in the Gerrit web interface, see Update Git repository access
permissions in Gerrit.

Here's a list of permissions and what users with these permissions can do:

• No access: Users with no permissions cannot do anything.
• View only: Users with read permissions cannot do anything unless added in Gerrit.
• Commit/View: Users with commit permissions cannot do anything unless added in Gerrit.

TeamForge Git integration | Work with Gerrit | 21

• Delete/View: Users with delete permissions cannot do anything unless added in Gerrit.
• Source Code Admin: Users with admin permissions have the right to fine tune access rights in Gerrit for the Gerrit

project involved.

In case you decide to change the Repository Category value to Custom from some other value, current access rights
will not be affected. Subsequent changes to source code permissions assigned to project roles in the corresponding
TeamForge project will have no impact in Gerrit. Basically, defining a custom review is like turning off “auto pilot”.

Note: In TeamForge 6.2, the code review policy for a Git repository is defined in the Description field. If you
had specified the code review policy in TeamForge 6.2 and have now upgraded TeamForge to version 7.1, you
will see the appropriate code review option selected in the TeamForge 7.1 user interface. The Description field
will still display the [RepoCategory:<Category_name>], but you can remove it since it does not have any effect
in TeamForge 7.1.

Related Links
TeamForge Git integration: Gerrit Code Review policies FAQ

TeamForge Git integration: Gerrit Code Review workflow FAQ

Set up a code review process for TeamForge Git repositories

22 | TeamForge Git integration | Work with Gerrit

Code review policies: mappings
This table shows how source code permissions in TeamForge are mapped to access rights in Gerrit based on the code
review policy.

Notes on customizing your code review policy
To modify an existing code review policy or create your own policy, you need to update the
/opt/collabnet/gerrit/etc/gerritforge.mappings file. This requires file system access to the Git
integration server.

While you are experimenting with the settings, we recommend that you create a new code review policy rather than
modify an existing one. If you delete the gerritforge.mappings file from the file system, it will be automatically
recreated with default settings after Gerrit is restarted.

gerritforge.mappings is a Java property file with the format [<name of Git Repo Category>.]<TeamForge SCM
permission cluster>.<number of entry>=<Gerrit Access Right Category Code>,(<Lower Bound>,<Upper Bound>[,<ref
spec>].

• Git Repo Category is the term internally used to describe a code review policy.
• If no ref spec is specified, the default value refs/* will be assumed.
• If a TeamForge project role has multiple permission clusters, only the most powerful one (scm_admin > scm_delete

> scm_commit > scm_view > none) mentioned in the mapping rules file for the corresponding repository category

TeamForge Git integration | Work with Gerrit | 23

will be considered. If none of the permission clusters of a TeamForge project role are mentioned in the mapping
rules file,"none" will assumed. If "none" is not mentioned in the mapping rules, no access rights will be assumed.

• If a Gerrit access right category code is mentioned for a repository category, all previously existing access rights of
that access right category will be replaced as long as the [<name of Git Repo
Category>.]keep_rights_added_in_gerrit property is set to "false". If this property is set to "true",
existing rights will be kept. The [<name of Git Repo Category>.]keep_rights_added_in_gerrit
property also determines whether access rights of Gerrit categories not explicitly mentioned for the repository category
will be deleted or kept.

Whenever a decision about an access right mapping has to be made for a TeamForge Git repository (which corresponds
to a Gerrit project), the repository description is parsed for a string matching the pattern "[RepoCategory:<name of repo
category>]". If no occurrence is found, default mapping rules (properties without a repository category) will be used;
otherwise, the properties starting with <name of repo category> of the first match will be used. If the repository category
is not found, a warning will be issued in the logs and the access rights currently defined will be preserved.

In TeamForge 7.x, you can specify the name of a code review policy that you've defined or customized in the Other
text field:

Note: In TeamForge 6.2, the code review policy for a Git repository is defined in the Description field. If you
had specified the code review policy in TeamForge 6.2 and have now upgraded TeamForge to version 7.1, you
will see the appropriate code review option selected in the TeamForge 7.1 user interface. The Description field
will still display the [RepoCategory:<Category_name>], but you can remove it since it does not have any effect
in TeamForge 7.1.

24 | TeamForge Git integration | Work with Gerrit

Set up a code review process for TeamForge Git repositories
Decide whether you want code review for your project's Git repository to be mandatory or optional and then follow this
general process.

This feature is available with version 7.0.0 (and later) of the TeamForge Git integration.

• To enforce code reviews, do the following:

a) As the project administrator, select the TeamForge Git repository for which you want to enforce code review.
b) For Repository Category, select the Mandatory review option and save it.
c) Set up the following roles:

• Create a "developer" role. This user can access source code in read only mode and send code for review. This
role has View only permissions for the Git repository.

• Create a "reviewer" role. This user can access source code, review code, approve or reject changes, and decide
whether to submit a change to the central Git repository in TeamForge. This role has project-level Delete/View
and Commit/View source code permissions.

With these changes in place, a user with the "developer" role can check out code, change code and send it for review.
A user with the "reviewer" role can review a change and ultimately decide whether to submit the change to the central
Git repository.

• To keep code reviews optional, do the following:

a) As the project administrator, select the TeamForge Git repository for which you want to set up the code review
policy.

b) For Repository Category, select the Optional review option and save it.
c) Set up the following roles:

• Create a "developer" role. This user can access source code in read only mode and send code for review. This
role has View/Commit permissions for the Git repository.

• Create a "reviewer" role. This user can access source code, review code, approve or reject changes, and decide
whether to submit a change to the central Git repository in TeamForge. This role has project-level Delete/View
and Commit/View source code permissions.

With these changes in place, a user with the "developer" role can check out code, change code and (optionally) send
it for review. A user with the "reviewer" role can review a change and ultimately decide whether to submit the change
to the central Git repository. Alternatively, since the review process is optional, the "developer" user can push changes
to the central Git repository.

Related Links
TeamForge Git integration: Gerrit Code Review policies FAQ

TeamForge Git integration: Gerrit Code Review workflow FAQ

Mandatory code reviews for Git repositories

Optional code review for Git repositories

Default code review for Git repositories

Custom code review for Git repositories

Prepare the Git client for code review
Gerrit Code Review provides a standard commit-msg hook which you can install in your local Git repository to
automatically create and insert a unique Change-Id line to a Git commit message.

When a change is reworked, the Change-Id associates the new version back to the original review.

To get the hook into your local Git repository, run this command:

scp -p -P 29418 <user>@<GerritHostServer>:hooks/commit-msg .git/hooks

TeamForge Git integration | Work with Gerrit | 25

Related Links
commit-msg hook

Change-Ids

Gerrit Code Review - Change-Ids: Creation

TeamForge Git integration: Gerrit Code Review policies FAQ
Questions on using Gerrit Code Review for Git repositories in TeamForge.

Gerrit Code Review is an open source project for code review and verification
for the Git version control system. It also has capabilities for administering

What is Gerrit Code Review? What
does it have to do with the
TeamForge Git integration? Git repositories and controlling access to source code. The TeamForge Git

integration provides TeamForge's role-based access control (RBAC) feature
to Gerrit and thus to Git repositories hosted by TeamForge.

Yes, you can turn on the Gerrit Code Review feature for Git repositories in
your TeamForge project. By default, this feature is switched off when you

Is it possible to use Gerrit Code
Review when my TeamForge project
has Git repositories? create a Git repository. You can turn it on or off for individual repositories

from your TeamForge project configuration.

There are several possibilities. You can —In what ways can I use the code
review process in my TeamForge
project's Git repository? • Choose to not use the code review feature

• Enforce code review for every commit made to a TeamForge Git repository
and control the review process (such as who can review, who can vote for
a code review and so on) from TeamForge

• Use code review but have the possibility to bypass it, and also control the
review process from TeamForge

• Control the review process entirely from Gerrit (not TeamForge)

For more information, see Control the code review policy for Git repositories.

Yes. You can enforce code review and have the have review process control
defined in Gerrit without using TeamForge's role-based acces contriol for

Can I enforce code review for a
TeamForge Git repository but handle
the review control process in Gerrit? source code. In the TeamForge Git repository's description field, include the

string [RepoCategory:custom]. When you do that, TeamForge source code
permissions for that project will no longer apply. You can define your own
internal group in Gerrit and give it appropriate permissions for the Gerrit
project corresponding to the Git repository in TeamForge. For more
information, see Manage Gerrit access rights outside TeamForge.

Yes. By default, Gerrit code review is disabled when you create a new Git
repository in your TeamForge project. To enable code review, you modify the
description field of the repository suitably.

Can I enable Gerrit code review for
individual Git repositories in
TeamForge?

If you changed the repository description as a user with the Source Code
Admin permission, the change will not get reflected in Gerrit immediately. In

I just changed the repository
description to impose a code review

case you want this change in effect almost immediately, the following needspolicy for my Git repository. Why is
to happen: soon after you change the repository description, the TeamForgethe Review button not enabled when
project administrator must remove any user with the Source Code AdminI click on a review request in the

Gerrit web interface? permission temporarily, and then add that user back. This action will trigger
an immediate sync which will enable the code review feature. You will then
see the Review button enabled for any review in the Gerrit web interface. If
you don't do this, the code review policy will apply after a periodical sync.

Related Links
Set up a code review process for TeamForge Git repositories

Mandatory code reviews for Git repositories

26 | TeamForge Git integration | Work with Gerrit

http://gerrit.googlecode.com/svn/documentation/2.0.34/cmd-hook-commit-msg.html
http://gerrit.googlecode.com/svn/documentation/2.0/user-changeid.html
http://gerrit-documentation.googlecode.com/svn/Documentation/2.1.7/user-changeid.html#_creation

Optional code review for Git repositories

Default code review for Git repositories

Custom code review for Git repositories

TeamForge Git integration: Gerrit Code Review workflow FAQ
Questions on using Gerrit Code Review for Git repositories in TeamForge.

Please see the Getting Started with Gerrit guide for details.What is the typical workflow when you use Gerrit
Code Review and TeamForge?

The TeamForge Git integration maps TeamForge's role-based
access control (RBAC) features to Gerrit access rights.

How does the TeamForge Git Integration manage
access rights in Gerrit for the code review process?

Take a look at this blog for details.How can I integrate the Jenkins Continuous
Integration server with the TeamForge Git
integration?

If Jenkins is not integrated, a TeamForge user having a role
with the Source Code Admin or SourceCcode Delete/View plus
Commit/View permissions can manually set "verified".

If there is no Jenkins setup, who can set "verified"
for a review request?

No, some other user (who is able to set "verified" for a review
request) cannot be override this; only Jenkins or the user who

What if Jenkins sets "verified fail (-1)": can some
other user override "verified" for a review request?

set "verified" can do this. However, if a review request is
amended, some other user can set "verified".

Yes; but only the user who submitted the review request can
abandon that request, nobody else can do that.

Is it possible to discard a review request?

Related Links
Set up a code review process for TeamForge Git repositories

Mandatory code reviews for Git repositories

Optional code review for Git repositories

Default code review for Git repositories

Custom code review for Git repositories

Add a TeamForge user to Gerrit Administrators
To grant additional TeamForge users Gerrit super user permissions, add the users to the Administrators group.

1. In your browser, bring up http://<GITSCMSERVERHOSTNAME>/gerrit/.

2. Log into Gerrit using the TeamForge site administrator username and password you provided while running the Git
installer's configuration script.

3. In the My tab, click Settings.

4. In the left panel, click Groups and select Administrators.

TeamForge Git integration | Work with Gerrit | 27

http://help.collab.net/topic/teamforge71-git-gerrit21x/reference/CTF6%202_ProjectMember_Essentials_Gerrit.pptx
http://blogs.collab.net/teamforge/teamforge-git-gerrit-integration-with-jenkins-ci

5. Click Administrators and add new members to the group.

28 | TeamForge Git integration | Work with Gerrit

The TeamForge users you add to the Administrators group will have Gerrit super user permissions. These users do
not have to be site administrators in TeamForge.

Tip: If you want to assign additional permissions to a group of users, make use of Gerrit’s internal group feature.
See Set up Code Search for the TeamForge Git integration for an example of how you can use this feature to
grant a group of users read permissions to all Git repositories.

Update Git repository access rights in Gerrit
By default, Gerrit projects (TeamForge Git repositories) are only visible to TeamForge users assigned a project role
with SCM permissions. To grant additional rights (for example, read access) to all registered users, or to TeamForge
global groups, or to a custom subset of users (a Gerrit internal group), log directly into the Gerrit console and make
those changes.

1. In your browser, bring up http://<GITSCMSERVERHOSTNAME>/gerrit/.

2. Log into Gerrit using the TeamForge site administrator username and password you provided while running the Git
installer's configuration script.

3. Select the Admin tab and click Projects.

4. In the All Projects page, click Access.
You will see a list of all default access rights.

5. To change an access right, select a group and specify its category.

Here's an example where the group "Registered Users" is assigned the category "Read Access".

TeamForge Git integration | Work with Gerrit | 29

6. Click Add Access Right.

Manage Gerrit access rights outside TeamForge
When existing TeamForge user groups or project roles doesn't satisfy your requirements for organizational or other
reasons, you can add and manage access rights directly in Gerrit, bypassing the source code permissions in TeamForge.
You do this by creating an internal group in Gerrit and assigning this group appropriate access rights for the code and
the code review process.

This feature is available with the TeamForge Git integration version 7.0.0 (and later).

Note: In most situations, using the custom category in TeamForge or defining your own RepoCategory is
better than defining internal Gerrit groups. See this blog post for more information.

1. In the TeamForge project with the Git repository, make sure you have a role with the Source Code Admin permission
and there is a user assigned this role.

2. Log into the Gerrit web interface as the above user by doing one of the following:

• Click the Gerrit tab in TeamForge.

30 | TeamForge Git integration | Work with Gerrit

http://blogs.collab.net/teamforge/managing-git-branch-level-permissions-with-teamforge-and-gerrit

• Type in the URL http://<TEAMFORGE HOSTNAME>/.

3. In Gerrit, select the Admin tab and click Groups.

4. Create a new group and provide it a description.

You can now do the following:

a) In the Group Type dropdown, select Internal Group.
b) Add TeamForge users in the Members field.
c) Add TeamForge user groups in Included Groups.

Type in ":" followed by the user group name. All members of this user group will automatically receive all rights
assigned for this Gerrit internal group.

5. To provide this group access rights in the Gerrit project (corresponding to the Git repository in TeamForge), follow
these steps:

a) In the Admin tab, click Projects and then click the project for which you want to specify access rights.
b) Click Access, and specify the category, group, reference (for example, refs/*, refs/<BRANCHNAME>), and

range.

TeamForge Git integration | Work with Gerrit | 31

c) Click Add Access Right.

You can provide the group multiple access rights. All members and included groups will now have the appropriate
access rights for the Gerrit project (Git repository in TeamForge). For more information, see the Gerrit help on access
rights and permissions.

In case, you want to tightly control who can change information for a newly created internal group, then you, as the
Gerrit site administrator, must set the "Administrator" group (a default system group having a Gerrit site administrator
as initial member) in the Owners field. For more information, see the Gerrit help on System Groups.

Set up Code Search for the TeamForge Git integration
To use TeamForge Code Search functionality for Git, manually grant the TeamForge Code Search user permissions to
access all Git repositories.

In TeamForge 6.2 (and later versions), Code Search functionality is available through integration with Black Duck Code
Sight.

To be able to access the Gerrit console directly from TeamForge, you'll need to set it up as a linked application.

1. Make sure that a Unix system user with the name scmviewer exists. If not, create this user by running the following
command:

useradd scmviewer

32 | TeamForge Git integration | Work with Gerrit

http://gerrit.googlecode.com/svn/documentation/2.1.7/access-control.html#_categories
http://gerrit.googlecode.com/svn/documentation/2.1.7/access-control.html#_categories
http://gerrit.googlecode.com/svn/documentation/2.1.7/access-control.html#_system_groups

2. You need the root user's public key for SSH authentication on the Code Search server. Do the following:

a) On the Code Search box, check whether the key is present at /root/.ssh/id_rsa.pub. If not, generate it
by running the ssh-keygen command.

b) Copy it to a temporary location (/tmp) on the TeamForge application server.
c) Run the set_auth_key.py script for the scmviewer user on the TeamForge application server.

Note: This script requires TeamForge site administrator credentials.

cd /opt/collabnet/teamforge/runtime/scripts/codesearch/

./set_auth_key.py --authkey-file=/tmp/id_rsa.pub

3. Sync the scmviewer user to Gerrit by running the following command in a shell on the host where you installed
the Git integration.

curl http://localhost:9081/api/gerrit/users/scmviewer/sshkeys

4. Log into the Gerrit console as a Gerrit super user and create an internal Gerrit group, for example, "CodeSight Group".

5. Add the scmviewer user to the group.

6. Grant read access to the group.

a) In the Gerrit project page that displays access rights, select Read Access for Category.
b) For Group Name, enter the name of the internal group ("CodeSight" in the example) you created.
c) Enter "refs/*" for Reference Name.
d) Enter "+1:Read Access" for Permitted Rage.
e) Click Add Access Right.

7. Log out from Gerrit.

8. Restart the Code Search server.

/etc/init.d/collabnet restart tomcatcs

TeamForge Git integration | Work with Gerrit | 33

Gerrit configuration (for advanced users)
Here are some recommendations for gerrit.config settings.

Memory settings in Gerrit configuration
Memory settings in gerrit.config.

heapLimit
Memory is crucial to Gerrit performance. The container.heapLimit parameter is used here. From the Gerrit
documentation:

container.heapLimit
 Maximum heap size of the Java process running Gerrit, in bytes. This property
 is translated into the -Xmx flag for the JVM.
 Default is platform and JVM specific.
 Common unit suffixes of k, m, or g are supported.

Our default configuration does not set this parameter. So what should the default value be? According to Oracle
documentation, starting from J2SE 5.0 it is the smaller of 1/4th of the physical memory or 1GB (before J2SE 5.0, the
default maximum heap size was 64MB). We recommend you set this parameter to 8GB for a 16GB machine and 16GB
or more for a machine with 24GB or more memory.

packedGitLimit
This is another important setting. From the Gerrit documentation:

core.packedGitLimit
 Maximum number of bytes to load and cache in memory from pack files.
 If JGit needs to access more than this many bytes it will unload less
frequently used windows to reclaim memory space within the process.
 As this buffer must be shared with the rest of the JVM heap, it should be a
 fraction of the total memory available.
 Default on JGit is 10 MiB on all platforms.
 Common unit suffixes of k, m, or g are supported.

From this post on Gerrit performance:

We run an 8 GiB JVM heap, and of that heap we permit 2 GiB of memory to used as
 a buffer cache for packed Git data.
By default that buffer cache is 20 MiB. If you don't raise packedGitLimit that
 JVM heap won't really be utilized and you
will be thrasing the internal buffer cache.

So it is good to increase packedGitLimit to at least 2GB. This is in keeping with the experience of our customers
who use Gerrit heavily. We recommend you set this parameter to 2GB or 4GB.

packedGitWindowSize
core.packedGitWindowSize
 Number of bytes of a pack file to load into memory in a single read operation.
 This is the "page size" of the JGit buffer cache,
 used for all pack access operations. All disk IO occurs as single window
reads. Setting this too large may cause the process
 to load more data than is required; setting this too small may increase the
 frequency of read() system calls.
 Default on JGit is 8 KiB on all platforms.
 Common unit suffixes of k, m, or g are supported.

Suggested setting:

core.packedGitWindowSize = 16k (default is 8k)

34 | TeamForge Git integration | Work with Gerrit

http://gerrit.googlecode.com/svn/documentation/2.1.7/config-gerrit.html#container
http://gerrit.googlecode.com/svn/documentation/2.1.7/config-gerrit.html#container
http://gerrit.googlecode.com/svn/documentation/2.1.7/config-gerrit.html#core
http://gerrit.googlecode.com/svn/documentation/2.1.7/config-gerrit.html#database

packedGitOpenFiles
core.packedGitOpenFiles
 Maximum number of pack files to have open at once. A pack file must be opened
 in order for any of its data to be available in a cached window.
 If you increase this to a larger setting you may need to also adjust the
ulimit on file descriptors for the host JVM, as Gerrit needs additional file
 descriptors available for network sockets and other repository data
manipulation.
 Default on JGit is 128 file descriptors on all platforms.

Suggested setting:

core.packedGitOpenFiles = 4096 (default is 128)

Note: Changing this parameter may require adjusting ulimit on file descriptors for the host JVM.

sshd settings in Gerrit configuration
sshd settings in gerrit.config.

sshd.threads
This is another setting crucial to Gerrit performance. From Gerrit documentation:

Number of threads to use when executing SSH command requests.
If additional requests are received while all threads are busy they are queued
and serviced in a first-come-first-serve order.
By default, 1.5x the number of CPUs available to the JVM.

Based on our customer experience, you should set this parameter between 24 and 56. We recommend 48 as initial value
and then fine-tuning it.

sshd.batchThreads
Number of threads to allocate for SSH command requests from non-interactive
users.
If equals to 0, then all non-interactive requests are executed in the same queue
 as interactive requests.
Any other value will remove the number of threads from the queue allocated to
interactive users,
and create a separate thread pool of the requested size, which will be used to
run commands from non-interactive users.
If the number of threads requested for non-interactive users is larger than the
 total number of threads allocated in sshd.threads,
then the value of sshd.threads is increased to accomodate the requested value.
By default, 0.

Value used by one of our customers:

sshd.batchThreads = 2

sshd.streamThreads
Number of threads to use when formatting events to asynchronous streaming clients.

Event formatting is multiplexed onto this thread pool by a simple FIFO scheduling
 system.
By default, 1 plus the number of CPUs available to the JVM.

Value used by one of our customers:

sshd.streamThreads = 50

TeamForge Git integration | Work with Gerrit | 35

http://gerrit.googlecode.com/svn/documentation/2.1.7/config-gerrit.html#sshd

sshd.maxAuthTries
Maximum number of authentication attempts before the server disconnects the
client.
Each public key that a client has loaded into its local agent counts as one auth
 request.
Users can work around the server’s limit by loading less keys into their agent,

or selecting a specific key in their ~/.ssh/config file with the IdentityFile
option.
By default, 6.

Value used by one of our customers:

sshd.maxAuthTries = 12

Database settings in Gerrit configuration
Database settings in gerrit.config.

database.poolLimit
You might want to tune the database.poolLimit parameter:

Maximum number of open database connections. If the server needs more than this
 number,
request processing threads will wait up to poolMaxWait seconds for a connection
 to be released
before they abort with an exception. This limit must be several units higher
than the total number
of httpd and sshd threads as some request processing code paths may need multiple
 connections.
Default is 8.

In the gerrit.config file, it is set by default to 50 which is a reasonable value to start with. As a reference, here
are some other values used by our customers: 52, 64 and 250.

database.poolMaxIdle
Maximum number of connections to keep idle in the pool.
 If there are more idle connections, connections will be closed
 instead of being returned back to the pool. Default is 4.

Values used by our customers: 12, 16

database.poolMaxWait
Maximum amount of time a request processing thread will wait to acquire a database

connection from the pool. If no connection is released within this time period,
 the processing
thread will abort its current operations and return an error to the client.
Values should use
common unit suffixes to express their setting:

ms, milliseconds
s, sec, second, seconds
m, min, minute, minutes
h, hr, hour, hours
If a unit suffix is not specified, milliseconds is assumed.
Default is 30 seconds.

Values used by our customers: 60 seconds

36 | TeamForge Git integration | Work with Gerrit

http://gerrit.googlecode.com/svn/documentation/2.1.7/config-gerrit.html#database

log4j settings in Gerrit configuration
log4j settings in gerrit.config.

For heavy users, we recommended switching from verbose tracing to normal logging in the log4j.properties
file. The original file section looks like this:

Normal logging
#log4j.appender.TRC.Threshold=OFF
#log4j.logger.com.google.gerrit.rpc=INFO
#log4j.logger.com.google=INFO
#log4j.logger.com.gerics=INFO
#log4j.logger.com.google.gerrit=INFO
#log4j.logger.com.google.gerrit.pgm.util.RuntimeShutdown$ShutdownCallback=INFO

Verbose tracing (for troubleshooting purposes)
log4j.appender.TRC.Threshold=DEBUG
log4j.logger.com.google.gerrit.rpc=INFO
log4j.logger.com.google=DEBUG
log4j.logger.com.gerics=DEBUG
log4j.logger.com.google.gerrit=DEBUG
log4j.logger.com.google.gerrit.pgm.util.RuntimeShutdown$ShutdownCallback=INFO

Replace it with the following (uncomment normal logging and comment out the verbose tracing):

Normal logging
log4j.appender.TRC.Threshold=OFF
log4j.logger.com.google.gerrit.rpc=INFO
log4j.logger.com.google=INFO
log4j.logger.com.gerics=INFO
log4j.logger.com.google.gerrit=INFO
log4j.logger.com.google.gerrit.pgm.util.RuntimeShutdown$ShutdownCallback=INFO

Verbose tracing (for troubleshooting purposes)
#log4j.appender.TRC.Threshold=DEBUG
#log4j.logger.com.google.gerrit.rpc=INFO
#log4j.logger.com.google=DEBUG
#log4j.logger.com.gerics=DEBUG
#log4j.logger.com.google.gerrit=DEBUG
#log4j.logger.com.google.gerrit.pgm.util.RuntimeShutdown$ShutdownCallback=INFO

TeamForge Git integration | Work with Gerrit | 37

TeamForge Git integration: History protection

History rewrites are non-fast-forward updates of remote refs and associated objects. History rewrites happen when a
branch in a remote repository gets deleted, previously pushed commits get amended or filtered and forcefully re-pushed,
or a remote branch/tag is pointed to an entirely different commit history.

History may get rewritten without leaving any trace of the previous state. Sometimes this behavior may be wanted —
for example, in the case of removing code violating intellectual property, removing mistakenly committed large binary
files or removing merged feature branches. The TeamForge Git integration therefore does not disable the history rewrite
feature, but instead enables it for SCM Administrators alone. However, since rewriting history might be easily abused
and result in accidental data loss, we've introduced the History Protection feature as a safety net and necessity for ensuring
proper audit compliance.

History protection archives rewritten changes and keeps backups of deleted branches. If history changes occur, an
immutable backup ref is created in the remote repository, notification emails are sent to all members of the Gerrit
Administrators group, and an event is logged in the audit log. The backed up ref can be restored into a new branch
with any Git client (without needing physical file access to the Gerrit server). Gerrit site administrators can still decide
to remove selected backup refs permanently.

TeamForge Git integration: Enable history protection
You can turn on history protection for the entire integration server or for an individual Git repository.

• To turn on history protection server-wide (for all the repositories hosted on the Git integration server), do the following:

a) Set GERRIT_FORCE_HISTORY_PROTECTION=true in
/opt/collabnet/teamforge/runtime/conf/runtime-options.conf.

b) Restart the gerrit service.

/etc/init.d/collabnet restart gerrit

Note: If you enable history protection server–wide, it cannot be overridden (turned off) for an individual
Git repository. It will remain in effect for all Git repositories on the integration server.

• To turn on history protection for an individual Git repository in a TeamForge project, select the Protect History
option while creating the repository. For an existing repository, do the following:

a) On the Source Code page, select the Git repository and click Edit
b) Select the Protect History option.

38 | TeamForge Git integration | TeamForge Git integration: History protection

c) Click Save.

You can turn history protection on or off any time. However, your change will not be reflected in Gerrit immediately.
It will be effective after the time that you defined as the regular refresh interval while installing the Git integration.

If you want your change to take effect immediately, do this right after you select or de-select the Protect History option:
as a user with the Source Code Admin permission, temporarily remove any user having a project role with any SCM
permission, and then add that user back. This will trigger an immediate sync which will enable history protection. After
that, the Gerrit Administrator will be able to see History Protection enabled in the Gerrit web interface (by logging in
as a Gerrit Administrator and clicking the General link for the project with the name of the Git repository).

Note: In TeamForge 6.2, history protection for a Git repository is turned on from the Description field. If you
had turned on history protection in TeamForge 6.2, and have now upgraded TeamForge to version 7.1, you will
see the History Protect option selected in the TeamForge 7.1 user interface. The Description field will still
contain [Repo:ProtectHistory], but you can remove it since it does not have any effect in TeamForge 7.1.

Related Links
TeamForge Git integration: History protection FAQ

History protection reports

TeamForge Git integration | TeamForge Git integration: History protection | 39

History protection reports
Once history protection is turned on, any non-fast-forward push to a remote repository or deletion of a branch or tag on
a remote repository is recorded and reported.

Email notifications
When history is rewritten, an email is sent to the Administrator group members in Gerrit.

Gerrit web interface
Every history rewrite event is logged and stored in the Gerrit database and visible in the Gerrit web interface. As Gerrit
Administrator, you can —

• See rewritten history from Project > Rewritten History.

• Restore history by clicking Resurrect and providing a name for the new branch.

• Permanently remove a branch by clicking Delete Permanently.

Git command line
You can use a standard Git client and run git fetch && git ls-remote for information on rewritten and deleted
branches.

40 | TeamForge Git integration | TeamForge Git integration: History protection

You can view entries in refs/rewrite (for non-fast-forward pushes) and refs/delete using the Git ls-remote
command only if read access is granted to refs/*. Gerrit will prevent any other action such as delete/force-update on
those special refs for all users including administrators.

Audit log entries
The following events are logged in /opt/collabnet/gerrit/logs/gerrit.audit.log:

• Remote branches are deleted
• History is rewritten (non-fast-forward push)
• Backup branches are resurrected
• Backup branches are permanently deleted
• History Protection is turned on or off

Related Links
TeamForge Git integration: History protection FAQ

TeamForge Git integration: Enable history protection

TeamForge Git integration: History protection FAQ
Questions on history protection for Git repositories in TeamForge.

History rewrites are non-fast-forward updates of remote refs and associated objects.
History rewrites happen when a branch in a remote repository gets deleted, previously

What is history protection?

pushed commits get amended/tree filtered and forcefully re-pushed, or a remote
branch/tag is pointed to an entirely different commit history. For more information, see
History Protection.

Yes, a user with file system access to the Unix machine where the Git integration is
hosted can turn on history protection. First set the property

Is it possible to turn on
history protection for all Git

forceHistoryProtection = true inrepositories hosted on a Git
integration server? If yes,
how?

/opt/collabnet/gerrit/etc/gerrit.config in the [gerrit] section.
Then restart the gerrit service by running $ service gerrit restart on a
shell.

With TeamForge 7.1, do the following:

• Set GERRIT_FORCE_HISTORY_PROTECTION=true in
/opt/collabnet/teamforge/runtime/conf/runtime-options.conf.

• Restart the gerrit service.

/etc/init.d/collabnet restart gerrit

To enable history protection immediately, a TeamForge user with the Source Code
Admin permission must do this right after enabling Protect History: temporarily remove

I've enabled Protect History
for my TeamForge project's

any user with a project role with any SCM permission, and then add that user back. ThisGit repository. Will this be
effective immediately? will trigger an immediate sync after which history will be protected for the Git repository.

Otherwise, history protection will be enabled after a periodical sync.

No, when history protection is enabled server-wide for the Git integration server, it
cannot be turned off for a particular Git repository.

Can I turn off history
protection for any

TeamForge Git integration | TeamForge Git integration: History protection | 41

http://help.collab.net/topic/teamforge71-git-gerrit21x/reference/History_rewrite.pptx

particular Git repository
when it is enabled
server-wide?

Backup branches are generated based on the type of History Rewrite. For a remote
branch that is deleted, this is under refs/delete. For a non-fast-forward push, this

Where can I see the backup
branches generated by
history protection? is under refs/rewrite with the branch name containing the timestamp, original

branch and the user who rewrote history, for example,
refs/delete/20121112042512-test--david.

A user who is a member of the Gerrit Administrator group can resurrect or permanently
delete backup branches. By default, the TeamForge site administrator whose credentials
are used for running the post-installation script is part of the Gerrit Administrator group.

Who can resurrect or
permanently delete backup
branches?

By default, a TeamForge user with SCM View (or more) permission can see all backup
branches by executing git fetch && git ls-remote origin. In Gerrit, the

Who can see backup
branches?

user must be part of a group which has at least read access for refs/delete and
refs/rewrite for the given Gerrit project (TeamForge Git repository).

Yes, objects in backup branches under refs/rewrite and refs/deleted are
referenced and cannot be cleaned up by Git's garbage collection.

Are the backup branches
under refs/rewrite and
refs/delete protected
from Git garbage collection
which removes unreferenced
objects?

The backup branches on the Git server are mainly Git objects that are compressed deltas
of original file versions. Git regularly compresses these objects to save disk space.

Do backup branches take up
a lot of disk space on the Git
server?

In Git, reflog records all activity on a branch, while History Protect only reports
deleted branches/tags and history rewrites (non-fast-forward pushes) For details of all
the differences, see Git reflog vs TeamForge Git integration History Protect.

What is the difference
between Git reflog and
History Protect?

Related Links
TeamForge Git integration: Enable history protection

History protection reports

GERRIT_FORCE_HISTORY_PROTECTION
The GERRIT_FORCE_HISTORY_PROTECTION token determines whether the history protection feature of the
TeamForge Git integration is enabled. If it is set to TRUE, history protection is turned on for all repositories hosted on
the Git integration server.

Values

TRUE or FALSE

Default
FALSE

Comments

In TeamForge 7.0 (and later versions), this token is defined in the runtime-option.conf file to support the
non-interactive installation of the Git integration. After Gerrit's post-install script is run, the value of this token is used
to set the configuration property forceHistoryProtection in the
/opt/collabnet/gerrit/etc/gerrit.config file.

42 | TeamForge Git integration | TeamForge Git integration: History protection

http://git-scm.com/book/en/Git-Internals-Git-Objects
http://help.collab.net/topic/teamforge71-git-gerrit21x/reference/Git%20reflog%20vs%20TF%20History%20Protect.docx
http://www.kernel.org/pub/software/scm/git/docs/git-reflog.html

For more information on enabling history protection, see TeamForge Git integration: Enable history protection .

TeamForge Git integration | TeamForge Git integration: History protection | 43

TeamForge Git integration: FAQ

Use this background information to set up, maintain, support and work with the TeamForge Git integration.

TeamForge Git integration: Install FAQ
Questions about installing the TeamForge Git integration.

For the required software, see Requirements for the TeamForge Git
integration.

What are the requirements for
running the installer?

Note: In addition, you will need the following:

• root/sudo access to the machine
• A non-expiring, non-lockable TeamForge user account with site

administrator permissions

The TeamForge Git integration is available as an add-on for TeamForge 6.2.
The installer is an RPM package which you can run using a simple yum

What does the installer consist of?

command. It contains a post-installation script which allows you to configure
the integration to work with TeamForge.

No.Do I need to shut down any
TeamForge services to run the
installer?

Yes, CollabNet now provides VMware images for TeamForge with the Git
integration pre-configured.

Is there an alternative way to install
TeamForge with the Git integration?

If you have installed version 7.0.2 (or later) of CollabNet's customized
Gitweb-caching, Gravatar support is enabled by default. To disable this

How do I disable Gravatar support
from the TeamForge Git Integration?

support site-wide, comment out the following lines (by including a # at the
beginning of each line) in the file
/var/www/gitweb-caching/gitweb_defaults.pl:

'avatar' => {
 'sub' => \&feature_avatar,
 'override' => 0,
 'default' => ['gravatar']},

Related Links
Install the TeamForge Git integration

TeamForge Git integration: Post-install FAQ
Post-install questions on the TeamForge Git integration.

After the installation finishes successfully, you will find the post-installation script at
/usr/sbin/ctf-git-integration-setup.sh.

Where can I locate the
post-installation script?

The logs are located under /tmp/ctf-git-integration-setup.log. For
more on log files, see the README and TeamForge Git integration reference .

Where can I find logs for
installation errors?

44 | TeamForge Git integration | TeamForge Git integration: FAQ

http://www.collab.net/downloads/teamforge#tab-0

The TeamForge user credentials you supply are used to synchronize TeamForge project
roles and permissions. The credentials are encrypted -- so it is safe to provide them.

Why does the
post-installation script ask
for the TeamForge username
and password? Is it safe to
provide these values?

After you successfully run the post-installation script, you can start (and stop) the Git
service by running the following commands on a shell as the root or sudo user:

How can I start and stop
Git?

$ service gerrit start

$ service gerrit stop

You can run the post-installation script
/usr/sbin/ctf-git-integration-setup.sh at any point. The script will

I provided some incorrect
values while running the
post-installation script. Can
I change them?

walk you through all configuration values, one by one, and ask if you want to change
them.

CollabNet's VMware image has standard configurations for the Git integration. If you
want to reconfigure a property (change the hostname from the default "localhost" to

I'm using CollabNet's
VMware image for

the FQDN), log in as the TeamForge site administrator and edit the property for the
Git integration.

TeamForge with the Git
integration pre-configured.
I want to change certain
parameters of the Git SCM
adapter, for example, the
hostname of the server. How
can I do that?

Make sure you retain the other configuration values.

TeamForge Git integration | TeamForge Git integration: FAQ | 45

TeamForge Git integration: General usage FAQ
General usage questions about the TeamForge Git integration.

After running the post-installation script, first create an SCM repository of type Git in
your TeamForge project. Then add at least one project role with SCM permissions to

What are the next steps
after the post-installation
script runs? access that repository and assign that role to one or more users. With the appropriate

credentials (uploaded authorized keys) and the clone URL provided in the Source Code
page, users will be able to clone the Git repository.

A new project role with source code permissions must exist. A user needs this role to
access the repository from the TeamForge web interface. Project administrator rights,

I am a site admin/project
admin/have global SCM

site administrator rights, global roles, and default access permissions for project
membership are currently ignored by the Git integration.

permissions/looking at a
public project. Why can't I
access a newly created
repository from the
TeamForge web interface
or clone it using my Git
client?

TeamForge repositories are synched only if there is at least one project role with SCM
permissions in the corresponding TeamForge project. Once you create such a project
role, the synch should happen, and the repository should appear as a project in Gerrit.

I've created a Git repository
but it does not show up in
Gerrit. Why might this
happen?

If your administrator has set up Gerrit as a linked application to TeamForge, you will
automatically be logged into Gerrit (SSO) when you click its link. If not, access the URL

How can I log into Gerrit?

http(s)://<yourtfinstance>/scm integration server>/gerrit/
and provide your TeamForge credentials.

The Git integration currently allows you to access a Git repository using SSH. That said,
you must have generated an SSH key pair and uploaded the SSH public key to TeamForge
in My Settings > Authorized keys .

Alternatively, you can use http(s) to clone and push to Git repositories.

What are the Git protocols
that work with Git
repositories managed by
TeamForge?

Note: Use this option only if SSH is not available to you.

To enable http(s) access, log into Gerrit and generate an HTTP password (Settings >
HTTP Password > Generate Password). This password will not match your TeamForge
password; you'll need to provide it to your Git client whenever you perform an operation
that requires accessing the Git server. The clone URL for http(s) access follows this
convention:

git clone https://$USERNAME@<yourtfinstance/scm integration
 server>/gerrit/p/<TFreponame>

You can generate an SSH key pair on a Unix machine by running the following shell
command:

How do I generate an SSH
key pair?

$ ssh-keygen -t rsa

(You will be asked to provide the location to store the key pair. The default is the home
directory of the logged-in user.)

Right after you clone, but before you commit any changes locally, you will need to
configure Git if you haven't already.

After installing a Git client,
I am able to clone a Git
repository into my local

$ git config --global user.name "<TeamForge username>"work directory. However, I

46 | TeamForge Git integration | TeamForge Git integration: FAQ

am not able to "push"
anything to the remote

$ git config --global user.email "<email used in TeamForge
for the user>"

repository in spite of having
You should now be able to push your changes.view and commit

permissions. What should I
do ?

Yes, when you change your authorized key in TeamForge, it gets synced instantly with
the Git integration. So you should be able to access you Git repository using a new key
pair.

I've changed /appended my
public key in TeamForge.
Will I still be able to access
a Git repository using the
new SSH key pair?

Yes, when you push a local commit to the remote repository, an association will get
created if the commit message contains a reference to a TeamForge item such as a tracker
artifact, wiki or document.

Is a commit association
created in TeamForge after
I push my commit to a
remote Git repository?

Note: A commit association will not be created if you push your commit to
Gerrit's "review branch" (push for review).

The Git integration will still work, but with the following limitations:What happens if the
TeamForge site is down or

• If the TeamForge site is down, users will not be able to see commit associations
created in TeamForge, but still be able to push commits to a Git repository.

there are some network
problems -- will the Git
integration still work? • If the Git integration is hosted in LOCAL mode, network-related problems would

definitely prevent changes being pushed to a Git repository.
• If the Git integration is hosted in REMOTE mode, the synchronization of roles and

permissions will be cached during the period when TeamForge is down; Git will
function with the roles and permissions synched already.

In contrast to Subversion, Git has the concept of local commits that stay in the local
environment of a user, and at some point, get pushed to a remote repository all at once.

What is a "Jumbo Push"?

This push checks in changes from all commits into the remote repository. For each of
those commits, a commit object appears in the TeamForge (Source Code component).
So, one push can have an unlimited number of commits and thus commit objects in
TeamForge. You can, however, define the threshold for a single push based on how
many commits should generate a commit object. A push' containing commits beyond
that threshold is called a "Jumbo Push"'. You can configure the Jumbo Push threshold
by running the post-installation script.

See the README (APPENDIX, Relationship and Object mapping section) or TeamForge
Git integration reference .

What objects and
relationships are mapped
between TeamForge and
the Git integration?

TeamForge project roles, project role SCM permissions, global groups, SCM repositories,
and global group/project role membership are synched in two ways:

When are the objects and
relationships synchronized
between TeamForge and
the Git Integration? • Synchronously: after a regular interval (configurable using the post-installation script)

• Asynchronously: whenever there is a change related to roles or permissions within
TeamForge, it triggers the sync between TeamForge and the Git integration.

TeamForge repositories are only synched if there is at least one project role with SCM
permissions present in the corresponding TeamForge project.

TeamForge users are provisioned in Gerrit whenever you —

• Change their authorized keys in TeamForge

TeamForge Git integration | TeamForge Git integration: FAQ | 47

• Log into Gerrit by clicking the linked application link or using TeamForge username
and password

• Access GitWeb (web interface for a Git repository) by clicking a Git repository link
in the TeamForge Source Code page

Note: Changes in Gerrit are not synched back to TeamForge.

You can find the logs under /opt/collabnet/gerrit/logs/. For more on log
files, refer to the README or TeamForge Git integration reference .

Where can I find system
logs for the Git integration?

No, Gerrit is used to enforce TeamForge access permissions.Can I bypass Gerrit and
access a Git repository
directly?

Yes. See Set up Code Search for the TeamForge Git integration for more information.TeamForge supports an
integration with Black
Duck Code Sight. Does this
work with Git?

Currently, Gerrit does not allow removing projects that are created already (so that you
don't easily lose source code). One implication of this behavior is that even though you

I deleted a TeamForge Git
SCM repository but the

deleted the corresponding TeamForge repository, you will not be able to create a new
one with the same directory name.

corresponding Gerrit
project does not get deleted.
What's wrong?

As long as all the commits in the repository are yours and there is a linear history, a
force push should be sufficient. Otherwise, you would have to go into Gerrit and manually
add permissions to push commits authored by other individuals and merge commits.

How can I import an
existing Git repository into
Gerrit?

For backward compatibility reasons, this parameter has to be set to "/tmp". It does not
affect where Gerrit actually stores its Git repositories -- this is at /gitroot.

In the TeamForge web
interface, I see the
repository root parameter
for Git set to "/tmp". Can
I change that?

Associating artifacts based on commit messages and blocking commits without a commit
message is a core TeamForge mechanism that is supported by Git as well.

To add hook scripts, see http://gerrit-documentation.googlecode.com/svn/
Documentation/2.1.7/config-hooks.html.

Do we have default hook
scripts available for Git in
TeamForge?

Email alerts based on TeamForge commits is a core TeamForge feature, independent of
the SCM involved. In addition, Gerrit sends out review emails using the SMTP server

Do we have email alerts for
Git in TeamForge? If yes,
where do we configure it? specified during installation (it defaults to the TeamForge SMTP server). The mail

template is explained in
http://gerrit-documentation.googlecode.com/svn/Documentation/2.1.7/config-mail.html.

We support all SCM permission cluster options for TeamForge project roles. Only
TeamForge project roles are considered; default access permissions, global roles, project

Do we have Role Based
Access Control and Path

membership, site admin and project admin permissions are ignored. Path-basedBased Permissions for Git
in TeamForge? permissions are not relevant in Git since a Git commit always contains all files. If we

did not ship certain files, this would result in a checksum error. Gerrit supports
branch-based permissions but this feature is currently not directly exposed over the
TeamForge web interface.

48 | TeamForge Git integration | TeamForge Git integration: FAQ

http://gerrit-documentation.googlecode.com/svn/Documentation/2.1.7/access-control.html#category_FORG
http://gerrit-documentation.googlecode.com/svn/Documentation/2.1.7/access-control.html#category_READ
http://gerrit-documentation.googlecode.com/svn/ Documentation/2.1.7/config-hooks.html
http://gerrit-documentation.googlecode.com/svn/ Documentation/2.1.7/config-hooks.html
http://gerrit-documentation.googlecode.com/svn/Documentation/2.1.7/config-mail.html

TeamForge Git integration: Upgrade and Uninstall FAQ
Questions on upgrading and uninstalling the TeamForge Git integration.

You can upgrade by running the yum update command. See
Upgrade the Git integration along with TeamForge for details.

How do I upgrade the current version of my
Git integration?

Run the post-installation script with the upgrade switch:
/usr/sbin/ctf-git-integration.sh --upgrade

How can I update the configuration of the Git
integration after upgrading?

Only the amount of time it will take to upgrade the binary and change
the configuration (if required).

Is there any downtime during the upgrade?

You can uninstall the integration by running the yum remove
command. See Uninstall the TeamForge Git integration for details.

How can I uninstall the Git integration?

Related Links
Upgrade the Git integration along with TeamForge

TeamForge Git integration: Technical concepts FAQ
Questions on some of the TeamForge Git integration's more technical aspects.

The README describes how relationships (including permissions) are
mapped between TeamForge and Gerrit -- see APPENDIX, relationship

How are TeamForge SCM permissions
mapped to Gerrit Access Rights?

mapping or TeamForge Git integration reference for more information. The
mapping from TeamForge SCM permissions to Gerrit Access Rights is
defined in
/opt/collabnet/gerrit/etc/gerritforge.mappings. While
you can modify this file as you see fit, CollabNet officially supports only
the default configuration.

Have a look at the README and the help at Work with Gerrit .How can I fine tune access rights (read,
write, review, submit) for certain
users/groups in Gerrit?

See the README or TeamForge Git integration reference .What does the directory structure look
like for a Git integration?

For more information on Gerrit, see the Gerrit Community Documentation
page.

Where can I find more information
about Gerrit?

The Git integration uses 3 ports: 9080,9081, and 29418. See the README
or TeamForge Git integration reference for more information. For the

Which ports does the Git Integration
use? My organization has a strict

integration, Git integration uses 3 ports(9080,9081,29418 follow details in
README) Only port 29418 should be exposed by the firewall.

firewall policy, and I need to know
which ports to make available for the
Git integration.

When you do a Git push, Gerrit tries to do a reverse lookup of your IP address.
If the nameserver configured for your Git integration server cannot do this

I get a delay whenever I do a Git push,
but not when I do a Git fetch. What is
wrong?. reverse lookup, it will result in a timeout. You need to configure your

nameserver list (/etc/resolv.conf) correctly. For further information,
see this core Java bug.

If Gerrit is run with a different Unix user than gerrit, newly created and
modified files may not belong to the gerrit user any longer. As a

I ran Gerrit manually (without the
service script; now my secure config
file is gone and Gerrit does not start consequence, when you try to restart Gerrit using its services script (which

TeamForge Git integration | TeamForge Git integration: FAQ | 49

http://gerrit-documentation.googlecode.com/svn/Documentation/2.1.7/index.html
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=5092063

switches to the gerrit user), Gerrit might not start up due to wrong file
permissions. If Gerrit detects that the permissions of its secure config file

up. What happened and how can I fix
this?

have been tampered with, it even removes this file. You should, therefore,
only run Gerrit using the service script provide, and reconfigure it by running
the post-install script again. You can fix incorrect permissions by running
the following (as sudo or root):

chown -R gerrit.gerrit /opt/collabnet/gerrit

I deleted the dedicated TeamForge
Gerrit user account in TeamForge, and • The easy, and recommended, approach is to ask CollabNet's Professional

Services to undelete the TeamForge user in question.SCM permission synch is no longer
• Otherwise, you would have to create a new dedicated site admin user in

TeamForge, shut down Gerrit, re-run the post-install script and provide
working. How can I recover from this
situation?

the credentials of that user. Then, you would have to start Gerrit again,
and log in as that new user via the web interface. You will see that the
user does not have any special admin permissions. If you still have a
working user in Gerrit's administrator group, you could add the dedicated
Gerrit user to that group using Gerrit's web interface. If not, you would
have to manually add the new user to the Gerrit administrator group by
shutting down Gerrit, removing all files from its caching directory,
inserting the user id of the new user into Gerrit's Postgres reviewdb
DB group/user membership table, and starting Gerrit again. Since this
probably requires you to consult CollabNet's Professional Services as
well, we strongly recommend the previous option (undeleting the
previously removed user).

50 | TeamForge Git integration | TeamForge Git integration: FAQ

TeamForge Git integration reference

Here's some reference information on Gerrit, integration with the CollabNet Desktops, and older releases..

Gerrit directory structure, connectivity and more
Here's some reference information on Gerrit's scalability and hardware requirements, file/directory structure, database,
ports and connectivity.

Scalability and hardware requirements

• For estimated requirements and availability assumptions, see
http://gerrit-documentation.googlecode.com/svn/Documentation/2.1.7/dev-design.html#_scalability.

• For hardware considerations, see http://code.google.com/p/gerrit/wiki/Scaling.
• For a detailed description of performance-related settings, see

http://gerrit-documentation.googlecode.com/svn/Documentation/2.1.7/config-gerrit.html.

Gerrit directory structure
Gerrit expects a standardized directory structure under the GERRIT_SITE directory: /opt/collabnet/gerrit,
the gerrit user's home directory. The /etc/default/gerritcodereview file contains the GERRIT_SITE
variable and points to /opt/collabnet/gerrit.

Sub-directories of GERRIT_SITE (/opt/collabnet/gerrit):

- GERRIT_SITE

- .ssh: contains the SSH key for the gerrit user; generated during installation and needs to be backed up.
- bin: binaries, startup script
- gerrit.war: the main Gerrit service
- gerrit-sync.jar: the Gerrit-TeamForge synchronization service
- gerrit.sh: SYSV-style init script; launches and shuts down; linked to /etc/init.d/gerrit
- cache: disk cache; does not need to be backed up; can always be re-generated on the fly; should be deleted after an
upgrade or restore.

- etc: contains all configuration information; needs to be backed up.
- gerrit.config: the Gerrit configuration
- secure.config: obfuscated passwords and secrets
- log4j.properties: logging settings in log4j format
- gerritforge.mappings: defines how TeamForge access permissions are mapped to Gerrit access rights
- lib: libraries, potentially customer-specific extensions, treat like the bin directory

- logs: Gerrit log files; default configuration rotates logs daily, gzips old logs; debug files are rotated after they reach
10 MB; we keep 10 copies. You can make changes in Gerrit’s log4j.properties file at
/opt/collabnet/gerrit/etc.
- audit.log: audit events
- system.log: INFO-level logging
- sshd.log: logs connections to Gerrit's SSH port (not system shell SSH)
- *.gc.log: information on garbage collector usage
Note: In co-hosted mode, TeamForge log rotation behavior will be used as default.

- /gitroot: default location for Git repositories. The default location can be changed using the setting in
gerrit.config or by symlinking the directory. You need to back up this directory.

TeamForge Git integration | TeamForge Git integration reference | 51

http://gerrit-documentation.googlecode.com/svn/Documentation/2.1.7/dev-design.html#_scalability
http://code.google.com/p/gerrit/wiki/Scaling
http://gerrit-documentation.googlecode.com/svn/Documentation/2.1.7/config-gerrit.html

Database
Gerrit stores runtime information about users, groups, code reviews and commits in a PostgreSQL database called
reviewdb by default. You need to back up this database. If the Git integration is installed on the TeamForge server,
it will use the same PostgreSQL install as TeamForge. If the integration is on a separate server, it will use a local
PostgreSQL installation on that server. During installation, a new gerrit role and reviewdb schema get created.
Note that Git does not, at any point, access TeamForge schema within the Postgres database.

To access reviewdb from Gerrit, the following line will be added by the installer to
/var/lib/pgsql/9.0/pg_hba.conf:

host reviewdb gerrit samehost md5

Ports and connectivity
Gerrit opens three (TCP) ports: 9080, 9081 and 29418. You should expose only port 29418 outside localhost.

This port will be proxied by Apache conf (prefix /gerrit) and doesn't need to be
externally accessible. Do not expose this port to the outside.

9080: the Gerrit Web
interface

In the Local (or co-hosted mode), TeamForge talks to the Gerrit REST API over localhost.
Gerrit talks to TeamForge over its default SOAP URL.

9081: Gerrit-sync web
service (REST)

The Git integration needs bidirectional connectivity to the TeamForge host. In the Remote
(or distributed) mode, TeamForge talks to the Gerrit REST API over an Apache proxy
rule (SSL-enabled if Apache is SSL-enabled on the integration server where Gerrit is
running). Gerrit talks to TeamForge over its default SOAP URL.

Do not expose this port to the outside.

Developers use the SSH protocol to push and pull source code to and from Gerrit. This
port needs to be open to users.

29418: Gerrit SSH access

Note: Gerrit ships its own SSH implementation and offers no shell access over
this port.

Gerrit's integration with Continuous Integration (CI)

For an introduction on what the Gerrit review feature is about and how it works with CI, take a look at the following:

• http://alblue.bandlem.com/Tag/gerrit/
• http://urlenco.de/vhqjl
• Official Gerrit documentation on http://source.android.com/source/life-of-a-patch.html
• http://gerrit-documentation.googlecode.com/svn/Documentation/2.1.7/user-upload.html

Backward compatibility notes on gerritforge.mappings

If you are a current user and do not want the code review policy feature introduced in the TeamForge Git integration
version 7.0.0, you can continue to use your gerritforge.mappings file without any behavioral changes. To
determine whether you are still using the old gerritforge.mapping file format, there is a new property called
mapping_format_version. Its default value (if not mentioned) is 1. In the new template file, it is set to 2. This
allows for future changes to the format. If the number cannot be parsed, we issue an error message and assume 2.

The following two paragraphs are very technical — they may not interest you if you want to upgrade, unless you've
made extensive manual changes to access rights directly in the Gerrit web interface or use the programmatic access right
infrastructure.

In the backward compatibility mode (mapping_format_versioncodeph> < 2), the only managed categories are
READ, pHD, pTag, and OWN. Access rights of other categories (such as submit, review, forge identity) are be touched
by GerritSynch. In mapping_format_versioncodeph> == 2, we support all categories in Gerrit 2.1.8 and if
[<name of Git Repo Category>.]keep_rights_added_in_gerrit is set to false (which is the case

52 | TeamForge Git integration | TeamForge Git integration reference

http://alblue.bandlem.com/Tag/gerrit/
http://urlenco.de/vhqjl
http://source.android.com/source/life-of-a-patch.html
http://gerrit-documentation.googlecode.com/svn/Documentation/2.1.7/user-upload.html

for the default category, mandatory review and optional review), we wipe out access rights of previously unmanaged
categories as well.

If a Gerrit access right category code is mentioned for a repository category, all previously existing access rights of that
access right category are replaced as long as [<name of Git Repo
Category>.]keep_rights_added_in_gerrit is set to false. If this property is set to true, and the backward
compatibility mode is turned on, we only keep the existing access rights if they do not refer to refs/* or refs/tags/*.
If this property is set to true and mapping_format_versioncodeph> is set to 2, we keep the existing access rights
no matter what they refer to.

Mapping
Objects and Relationships are mapped from TeamForge to Gerrit, not the other way. The mapping rules are defined in
/opt/collabnet/gerrit/etc/gerritforge.mappings.

Gerrit ObjectTeamForge Object

ProjectSCM repository in TeamForge project (containing project roles with SCM
permissions)

GroupProject Role

GroupUser Group

Access rightProject Role with SCM permission

UserUser

Gerrit RelationshipTeamForge Relationship

SCM repository in TeamForge project with project roles with
SCM permissions

SCM repository in TeamForge project with project
roles with SCM permissions

User is part of a Group (which corresponds to a TeamForge
Project Role)

User is part of a User Group that is assigned a Project
Role

User is part of a Group (which corresponds to a TeamForge User
Group

User is part of a User Group

Corresponding group is assigned Gerrit access rights matching
the assigned TeamForge SCM permissions. The access rights

Project Role is assigned SCM Admin permission
(such as Admin, Delete and View, View and Commit,
View Only, None) are determined by the code review policy of the corresponding

TeamForge repository

Note: In this release, project administrator rights, site administrator rights, global roles,and default access
permissions for project membership are ignored.

Note: For the corresponding mappings in the first version of the TeamForge Git integration (version 6.2), see
this table.

Gerrit Access Rights CategoryGerrit Category Code

Read AccessREAD

Push BranchpHD

Push TagpTAG

OwnerOWN

Code ReviewCRVW

Forge IdentityFORG

TeamForge Git integration | TeamForge Git integration reference | 53

Gerrit Access Rights CategoryGerrit Category Code

SubmitSUBM

VerifiedVRIF

For more information about access control categories and their ranges in Gerrit, see
http://gerrit-documentation.googlecode.com/svn/Documentation/2.1.7/access-control.html.

TeamForge Git integration with the CollabNet Desktops
The CollabNet Desktops for Eclipse and Microsoft Visual Studio integrate smoothly with the TeamForge Git integration.

When you browse TeamForge’s Git repositories, you will be able to clone them directly from your IDE. Eclipse will
also detect Gerrit and expose its reviews in the task list.

If you have configured the Jenkins trigger plugin and Jenkins comments on the uploaded change sets, you will be able
to directly navigate to the build in question. For more information, see
http://tasktop.com/blog/eclipse/stage-build-review-with-git-gerrit-hudson-and-mylyn.

TeamForge Git integration archives
This section contains legacy documentation related to earlier versions of the TeamForge Git integration.

Mappings between TeamForge and Gerrit
This table shows how objects and relationships are mapped between TeamForge and Gerrit in the first version of the
TeamForge Git integration (version 6.2).

Gerrit RelationshipTeamForge Relationship

SCM repository in TeamForge project with project roles with SCM
permissions

SCM repository in TeamForge project with
project roles with SCM permissions

User is part of a Group (which corresponds to a TeamForge Project
Role)

User is part of a User Group that is assigned a
Project Role

User is part of a Group (which corresponds to a TeamForge User
Group

User is part of a User Group

Corresponding group is assigned Gerrit access rights (category code,
lower range, upper range):

READ,1,2
pHD,1,3

Project Role is assigned SCM Admin permission

pHD,1,3,refs/tags/*
pTAG,1,2
OWN,1,1

Corresponding group is assigned these Gerrit access rights (category
code, lower range, upper range):

READ,1,2
pHD,1,3
pTAG,1,2

Project Role is assigned SCM Delete permission

54 | TeamForge Git integration | TeamForge Git integration reference

http://gerrit-documentation.googlecode.com/svn/Documentation/2.1.7/access-control.html
http://tasktop.com/blog/eclipse/stage-build-review-with-git-gerrit-hudson-and-mylyn

Gerrit RelationshipTeamForge Relationship

Corresponding group is assigned these Gerrit access rights (category
code, lower range, upper range):

READ,1,2
pHD,1,2

Project Role is assigned SCM View and Commit
permission

Corresponding group is assigned these Gerrit access rights (category
code, lower range, upper range):

READ,1,1

Project Role is assigned SCM View Only
permission

Corresponding group is assigned these Gerrit access rights (category
code, lower range, upper range):

READ,-1,-1

Project Role is assigned SCM No Access
permission

Implicit access rights in all Gerrit projects (category code, lower
range, upper range):

CRVW, -1, 1
FORG, 1, 1

Registered user in TeamForge who has logged
into Gerrit at least once

TeamForge Git integration | TeamForge Git integration reference | 55

TeamForge Git integration release notes

Look here for information about releases of the Git integration supported by TeamForge 7.1.

TeamForge Git integration 7.1.4 release notes
Release date: December 2013

Fixed issues: TeamForge Git integration 7.1.4
Version 7.1.4 of the TeamForge Git integration includes this fix.

Mylyn Gerrit connectors for Eclipse can now parse the version string of the TeamForge Git integration.

TeamForge Git integration 7.1.3 release notes
Release date: July 2013

Fixed issues: TeamForge Git integration 7.1.3
Version 7.1.3 of the TeamForge Git integration includes these improvements and fixes.

This release includes code changes for handling the special TeamForge Code Search user account.

A Null Pointer Exception that was possible when the repository description is null is fixed.

TeamForge Git integration 7.1.2 release notes
Release date: July 2013

Fixed issues: TeamForge Git integration 7.1.2
Version 7.1.2 of the TeamForge Git integration includes the fix for a JGit security issue that does not enforce branch-based
read-access rights correctly.

The original security issue was reported here: https://groups.google.com/forum/#!topic/repo-discuss/DaR64jwRhpI.

For most users of the TeamForge Git integration, this is unlikely to pose a problem because someone exploiting the
security vulnerability would need to know or have the following:

• The SHA-1 of a commit for which they do not have access (because the commit was made in a branch for which
they do not have access) — SHA-1 are close to impossible to guess; so somebody would have to provide them that
information or they would have to get it from a mailing list or bug tracker.

• Legitimate read-access to at least one branch in the repository
• Path-based permissions — this is not a common scenario since the built-in TeamForge repository categories of

default review, optional review and mandatory review either grant access to all branches or no branch, so read-access
to at least one branch in the repository (previous point) is not provided

• How to exploit the bug and modify your Git client accordingly — Google has fixed the problem and announced
the fix publicly mentioning only that the problem is not exploitable with an ordinary Git client

56 | TeamForge Git integration | TeamForge Git integration release notes

https://groups.google.com/forum/#!topic/repo-discuss/DaR64jwRhpI

For more information, see
http://blogs.collab.net/teamforge/security-fix-for-gerrit-please-update-your-teamforge-git-integration

TeamForge Git integration 7.1.0 release notes
Release date: July 2013

New features: TeamForge Git integration 7.1.0
Version 7.1.0 of the TeamForge Git integration adds these new features.

Highlights

This release supports TeamForge 7.0.

There is a new, non-interactive process for installation with TeamForge 7.0.

With TeamForge 7.0, this release is supported on SuSE.

Fixed issues: TeamForge Git integration 7.1.0
Version 7.1.0 of the TeamForge Git integration includes these improvements and fixes.

artf146083: The local timezone was displayed instead of GMT in gitweb-caching.

artf144815: Go-URLs generated by the linkification feature in GitWeb did not convert all upper case characters to
lower case. This resulted in broken links.

Gravatar images displayed in gitweb-caching are now fetched over a secure HTTP connection.

The JGit library has been updated so that a vulnerability detected in earlier versions is fixed.

TeamForge Git integration | TeamForge Git integration release notes | 57

http://blogs.collab.net/teamforge/security-fix-for-gerrit-please-update-your-teamforge-git-integration
http://help.collab.net/topic/teamforge700/releasenotes/teamforge.html

	Contents
	TeamForge Git integration
	Set up the TeamForge Git integration
	Requirements for the TeamForge Git integration
	Install the TeamForge Git integration
	Upgrade the Git integration along with TeamForge
	Upgrade the Git integration independent of TeamForge
	Reconfigure the TeamForge Git integration
	Uninstall the TeamForge Git integration
	TeamForge Git integration: VMware image
	Change the administrator passwords (VMware image)
	Change the administrator's SSH key pair (VMware image)

	Create a Git repository in TeamForge
	Control access to Git source code
	Access Git with an SSH key
	Clone a Git repository
	Work with Gerrit
	Add Gerrit as a linked application
	Control the code review policy for Git repositories
	Mandatory code reviews for Git repositories
	Optional code review for Git repositories
	Default code review for Git repositories
	Custom code review for Git repositories
	Code review policies: mappings
	Notes on customizing your code review policy
	Set up a code review process for TeamForge Git repositories
	Prepare the Git client for code review
	TeamForge Git integration: Gerrit Code Review policies FAQ
	TeamForge Git integration: Gerrit Code Review workflow FAQ

	Add a TeamForge user to Gerrit Administrators
	Update Git repository access rights in Gerrit
	Manage Gerrit access rights outside TeamForge
	Set up Code Search for the TeamForge Git integration
	Gerrit configuration (for advanced users)
	Memory settings in Gerrit configuration
	sshd settings in Gerrit configuration
	Database settings in Gerrit configuration
	log4j settings in Gerrit configuration

	TeamForge Git integration: History protection
	TeamForge Git integration: Enable history protection
	History protection reports
	TeamForge Git integration: History protection FAQ
	GERRIT_FORCE_HISTORY_PROTECTION

	TeamForge Git integration: FAQ
	TeamForge Git integration: Install FAQ
	TeamForge Git integration: Post-install FAQ
	TeamForge Git integration: General usage FAQ
	TeamForge Git integration: Upgrade and Uninstall FAQ
	TeamForge Git integration: Technical concepts FAQ

	TeamForge Git integration reference
	Gerrit directory structure, connectivity and more
	TeamForge Git integration with the CollabNet Desktops
	TeamForge Git integration archives
	Mappings between TeamForge and Gerrit

	TeamForge Git integration release notes
	TeamForge Git integration 7.1.4 release notes
	Fixed issues: TeamForge Git integration 7.1.4

	TeamForge Git integration 7.1.3 release notes
	Fixed issues: TeamForge Git integration 7.1.3

	TeamForge Git integration 7.1.2 release notes
	Fixed issues: TeamForge Git integration 7.1.2

	TeamForge Git integration 7.1.0 release notes
	New features: TeamForge Git integration 7.1.0
	Fixed issues: TeamForge Git integration 7.1.0

